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The activation energy and rate constant of U(V)-Fe(III) to U(VI)-Fe(II) outer-sphere electron-transfer reaction
was studied using Marcus model. Experimental values were used for Gibbs energy change of the reaction,
and energy surfaces were calculated by quantum chemical methods. The calculated rate constant was in
reasonable accord with experimental value.

In a previous publication we have studied the rate and
mechanism of the outer-sphere “self” electron exchange between
actinyl(V) and actinyl(VI) aqua ions and the inner-sphere
mechanism between the corresponding hydroxide, fluoride and
carbonate complexes.1,2 The outer-sphere pathway was studied
using both the Marcus model and a simplified quantum chemical
model, whereas the inner-sphere pathway was studied using
quantum chemical models involving bridging ligands between
the actinyl(V) and (VI) ions. The model calculations for the
outer-sphere pathways were compared with experimental data
using the Marcus cross-relations.3 In the present study we will
expand the previous work by a direct calculation of the rate
constant and activation parameters for the following outer-sphere
oxidation of UO2

+ by Fe3+, cf. eq 1, for which the experimental
rate constant is 2.5× 105 M-1 s-1 at 25°C in a medium with
[H+] ) 1 M, and an ionic strength of 2.00 M.4

Following standard Marcus theory, the electron transfer occurs
where the total energy of the reactants coincides with the total
energy of the products along the reaction coordinate, as shown
in Figure 1. The chemical model used to obtain the potential
energy functions in Figure 1 were the complexes Fe(OH2)6

3+/2+

and UO2(OH2)5
+/2+, with a saturated first hydration shell; the

remaining solvent effects, including the second hydration sphere,
were described using the CPCM model.5 All the energy
calculations were performed using the MOLCAS 6 packages
of programs.6

The electron exchange can formally be described using three
consecutive reaction steps: formation of a precursor complex
between the reactants, followed by electron transfer between
U(V) and Fe(III) and finally formation of products.

The rate constant for the total reaction is7,8

whereKA is the equilibrium constant for the formation of an

outer-sphere ion pair between the reactants,κel is the electronic
transmission coefficient,νn is the nuclear frequency factor and
∆Gq is the activation free energy.

The electron transmission coefficientκel is given by

where the electronic and nuclear frequency factor,νel andνn,
are

H12 is the electron-transfer coupling element;λ is the re-
organization energy.Ei and νi are the energy change and
frequency of the vibrational modes,i, which bring the reactants
to the transition state.

The Gibbs energy surfaces of the precursor and successor
complexes in the Marcus theory are assumed to be quadratic
functions of the reaction coordinate, symmetric around the point
where the electron transfer takes place in self-exchange reac-
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Figure 1. Transition state structure at the intersection of two parabolas
U(V)-Fe(III) (A, precursor) and U(VI)-Fe(II) (B, successor).
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tions, but not in the general case. The two parabolas in Figure
1 describe the systems U(V)-Fe(III) (A) and U(VI)-Fe(II) (B),
respectively. The origin is the minimum of parabola A, and the
reaction coordinate,q, is 1.0 at the minimum of parabola B.
Using these definitions, one can determine the parabolas from
the reorganization energiesλ and µ and the Gibbs energy
change,∆G°, for the electron-transfer reaction. The reorganiza-
tion energies were obtained from the total energy curves, adding
the nonequilibrium solvation correction obtained from the
Marcus equation3

wherea1 anda2 are the radii of the cavities around the metal
centers including their first hydration shells,R12 is the distance
between them, andε0 andε∞ are the static and dynamic dielectric
constants of the solvent. Becauseλsol refers to the Gibbs energy,
the two parabolas correspond to the Gibbs energies of the
UO2(OH2)5

+-Fe(OH2)6
3+ (A) and UO2(OH2)5

2+-Fe(OH2)6
2+

(B) systems, respectively. The electronic energy of the (A) and
(B) systems was calculated using the geometry of the optimized
UO2(OH2)5

2+/+ and Fe(OH2)6
3+/2+ structures taken from ref 9;

they are gas-phase unrestricted MP2 (UMP2) optimized geom-
etries without symmetry constraints. The reaction coordinate
and the activation energy were calculated using the reaction
coordinate zero for the precursor and one for the successor at
their equilibrium geometry. From the Marcus theory, where it
is assumed that the parabolas (A) and (B) systems (Figure 1)
have the same curvature, we haveλ ) µ + ∆G° and∆Gq ) (λ
- ∆G°)2/4λ. It is only marginally more complicated to calculate
the activation energy without the assumption of equal curvatures
of the two potential functions.

The electronic transition coefficientκel is related to the
adiabatic character of the electron-transfer process; a process
is considered adiabatic if the nuclear motion is slow on the time
scale of changes in the electronic wave function. Hence the ratio
νel/νn is large and the electronic transmission coefficient,κel, is
close to 1. The rate of the electron transfer is determined by
the probability of arriving at the “proper” geometric configu-
ration (transition state) for precursor and successor; the rate is
independent of the size of the electronic coupling element as
long as the coupling is large enough for the process to be
adiabatic.

For a nonadiabatic electron transfer, the electronic coupling
is so small that the system needs multiple passes through the
“proper” geometry for the electron transfer to take place; hence,
the ratioνel/νn is small and the electronic transmission coefficient
κel is approximately equal toνel/νn. The total electron-transfer
rate then becomes independent ofνn but depends quadratically
on the electronic coupling elementH12.

The nuclear frequency factor is known to be insensitive to
the distance at which the electron transfer occurs between the
reactants. In contrast to this the electronic coupling element,
and consequently also the electronic frequency factor, decreases
exponentially with an increasing distance between the species.
Thus the outer-sphere mechanism is expected to be less adiabatic
than the inner-sphere mechanism.

The curvatures for the two parabolas are virtually identical
(the ratio between the coefficient for the quadratic term in the
two parabolas is 0.99998), and consequently, the original Marcus
assumption of identical parabolas can be used to obtain the
energy barrier∆Gq. However, the crossing point, that is, the
transition state, depends critically on∆G°. The experimental
determination of∆G° is straightforward, but this is not the case

for the quantum chemical calculation, where appreciable errors
are expected.9 We have therefore used the experimental value
-65 kJ/mol to locate the transition state. In ref 9 the Gibbs
energy change of reaction obtained at the minimal CASPT2
level was-67 kJ/mol, in excellent agreement with experiment,
but the energy obtained at the more sophisticated spin-restricted
CCSD(T) level was-36 kJ/mol, a value that differs appreciably
from the observed one. The value of the reaction coordinate at
the transition state, obtained from the parabolas in Figure 1, is
0.25, and the barrier for the reaction U(V)+ Fe(III) f U(VI)
+ Fe(II) using this value for the reaction coordinate is 8.0 kJ/
mol.

The rate depends on the barrier and on the coupling matrix
elementH12. To obtain an estimate of the latter, we used a
simplified model of the Fe-U complex, with only one water
molecule in the first hydration shell, linked by two hydrogen
bonded water molecules in the second coordination sphere; the
rest of the first and the second coordination spheres, as well as
the solvent, were described using the CPCM model.5 This model
turned out to be quite successful in the previous self-exchange
studies.1,2 The interaction energy between the two states
describing U(VI)-Fe(II) and U(V)-Fe(III) is twice the coupling
elementH12 and can be found from a (nonorthogonal) 2× 2
CI at the point where the parabolas cross. This point can be
calculated using gradient techniques, with the condition that the
energy difference between the precursor and the successor
should be zero at the transition state. However, this is a difficult
procedure because a reasonable geometry at the transition state
requires a good theoretical value for∆G°. In the present case
we have instead used a simpler procedure to find the geometry
of the transition state. We have optimized the geometry of the
precursor and successor complexes separately, and by assuming
that all coordinates vary linearly with the reaction coordinate,
it is simple to estimate the geometry of the transition state with
linear interpolation using the value of the reaction coordinate
at the crossing of the parabolas in Figure 1.

Using the estimated geometry for the transition state, we ob-
tained the coupling matrix element from a 2× 2 nonorthogonal
CI in the gas phase using minimal CASSCF without spin-orbit
coupling, in which the two diagonal matrix elements were put
equal to zero to ensure a proper estimate of the interaction
energy. The calculations were done using the big basis sets,
including the very diffuse functions with an exponent of 0.005
in the symmetries s, p, d and f on uranium. The value obtained
for H12 was 0.224 kJ/mol. UsingKA (eq 2)) 0.033 calculated
from the Fuoss-Eigen equation,10 we obtained rates for the
reactions U(V)+ Fe(III) f U(VI) + Fe(II) of 1.6× 106 s-1.
The experimental value, determined by Newton et al.,11 is
2.5× 105 s-1 and is in reasonable agreement with the calculated
one.

H12 is different for different states.1 Because the spin-orbit
interaction will mix different states, this could affect the effective
(H12)2. The contribution of the different LS-coupled states to
the effective (H12)2 will essentially be the (H12)2 for that state
multiplied by the corresponding weight (see ref 1). The spin-
orbit effect is small for the iron complexes and the weight of
the leading configuration is 0.9 in the U(V) complex. The effect
of the spin-orbit coupling on the effective (H12)2 is thus not
expected to be important.

Due to the long distance between uranium and iron at the
transition state, 8.1 Å,H12 is sensitive to the diffuse functions
in the basis set. If the outermost basis functions of s, p, d and
f-type (with exponents 0.005) are deleted from the basis set of
uranium,H12 decreases by a factor of 10, and the rate by a

λsol ) ( 1
2a1

+ 1
2a2

- 1
R12

)( 1
ε∞

- 1
ε0

) (6)

9026 J. Phys. Chem. A, Vol. 110, No. 29, 2006 Letters



factor of 100, whereas the energy is hardly affected at all. There
is hitherto little experience on how to choose basis sets for
calculating properties such as coupling matrix elements, and
this needs further investigations. However, the “best” value for
the coupling element is clearly obtained with the largest basis
set.

Rotzinger used another procedure to calculateH12 for the
M(II)/M(III) redox couples, with M ) V, Ru and Fe, and the
M(III)/M/(IV) redox couples for V and Ru.12 Using a
[M(OH2)6]2

5+ cluster, he estimatedH12 from the orbital energies,
assuming the splitting of the d-orbitals at different M-M
distances to reflect the splitting of the states. Rotzinger used a
rather limited basis set, and the M-M distance was estimated
by maximizingH12 vs R12 or, in the case of Fe(II)/Fe(III), by
comparing theoretical and experimental rates.

The procedure used by Rotzinger involves several ap-
proximations and assumptions that are not justified and appears
to us, therefore, as somewhat uncertain.

From the results presented in this study we conclude that
reasonable electron-transfer rates can be obtained for outer-
sphere electron-transfer reactions, provided that accurate values
for ∆G° can be obtained. However, the results depend heavily
on the diffuse parts of the basis sets, and this problem needs
further investigations.
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